e-Learning in electrical engineering

Glossário | Princípios de Navegação
Teoria dos Circuitos Análise de Circuitos Lineares Regime Sinusoidal Sistemas Trifásicos Teste os seus Conhecimentos

5. Potência no circuito RC série

Considere-se o circuito série alimentado por uma fonte de tensão alternada sinusoidal cuja tensão é descrita pela expressão

Figura 10– Esquema do circuito RC série

Conhecidos os valores de e , determinaram-se já (ver Circuito RC série) as expressões da impedância total do circuito e da corrente que ele absorve em regime permanente, considerando que a amplitude complexa da tensão tem uma fase nula na origem, isto é, .

com
e

A potência complexa deste circuito (isto é, a potência que a fonte deverá apresentar para alimentar este circuito) será dada por:

Atendendo às amplitudes complexas da tensão e da corrente, a potência complexa é dada por:

Pelo que as potências activa, reactiva e aparente são:

Como , as potências e assumem valores positivos mas a potência assume um valor negativo.

Conhecendo as amplitudes complexas das tensões aos terminais de cada elemento, e (ver Circuito RC série), pode calcular-se a potência de cada um dos elementos do circuito (elemento R e elemento C).

Sendo , a potência complexa associada à resistência é:

Como (ver Figura 5 de Circuito RC série), conclui-se que :

Isto é, a potência activa em jogo no circuito está apenas associada à presença da resistência .

Analogamente, para o condensador tem-se:

Pelo que a potência complexa associada ao condensador é:

 

Como (ver Figura 5 de Circuito RC série), conclui-se que :

Isto é, a potência reactiva em jogo no circuito está apenas associada à presença do condensador .

Como num circuito RC série , isto é, a impedância complexa é representada por um vector no 4º Quadrante, a potência reactiva assume valores negativos ; o circuito fornece energia reactiva à fonte de tensão.

 

 

 

Responsável : Maria José Resende | Realização : Sophie Labrique | © e-lee.net